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When there exists a nonlocal relation between polarization and electric field E in 
a cubic crystal, the dielectric tensor cii appropriate to a light wave with propagation 
constant k has the form [I, p. 96f]: 

(1) 

When this ansatz is substituted into Maxwell’s equations, the O(k2) terms cause 
the phase velocity to depend on wave polarization, so that we have bi-refringence 
if k is not parallel to a symmetry axis [I, 21. 

The detailed dependence of k and refractive index A, for a propagating mode of 
given polarization, on s E k/k has been predicted several times [ 1, 3,4] by invoking 
the contribution to cij of exciton transitions induced by the p . A interaction 
between an electron of momentum p and a field of vector potential A. For a plane, 
transverse electromagnetic wave with E/E = 5, we expand 

A = - & S{E, exp[i(k * r) - ot] - c.c.]} 

and consider transitions caused by the quadrupole O(k) contribution to Hint = 
---e(2m~)-~[p * A + A * p]. The probability of such a transition from ground state 
I 0) to state I 5) should be proportional to the absorption or radiative intensity 

I = l(S 1 Hint I O>j2 = Bk2 I 5. (S / pr I 0) . s I2 (2) 

which gives the s dependence of both absorption and #. 
Existing calculations [l, 3,4] based on (2) have selected a 4-fold axis as the 

direction of unit vector z and taken 5 to be either of 

g, = (s x z) 1 s x z I-1, ?I, = s x 5, * (3) 
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If this choice has any physical meaning, these waves must be the unique transverse 
pair that can propagate in a general direction in an anisotropic crystal (see below). 
In terms of the Cartesian components [cos 0, sin f3 cos 4, sin 19 sin +] of s, the 
functions I appropriate to “s” and “p” polarization, for 1 S> a doubly-degenerate 
excited state, assume the form [l , p. 1671, 

Z, = B, sin2 19 sin2 24, 

I, = B, sin2 28(3 + cos2 255). 
(4) 

These intensities are not invariant as they should be with respect to rotations 
about a trigonal axis, and therefore there must be additional transverse waves, 
which we shall see is not the case, or else the existing literature [l, 3,4] has gone 
astray. For if we set 1, = I,, we find 8 = 0 is an isolated point satisfying this 
isotropy condition whereas t9 = 7ri2, 4 = 0 lies on a continuous I, = I, curve 
passing through it. 

Clearly the error lies in the choice (3) for g. We can always find two orthogonal 
directions ?& , & such that I1 = I2 when we calculate Z from (2), and so if we do 
not get optical isotropy in a direction s in which it should occur by cubic symmetry, 
we have simply made the wrong choice of 5 for that direction. Equations (3) are 
appropriate for a crystal in which z is the unique optic axis, where an Oh cube 
has seven axes, in (001) and (111) directions. 

To determine the two correct 5 values for a given s, we must go back to Maxwell’s 
equations and derive [l, p. 1531: 

?Ei = [~g + OZ#~] Ei + GPsi2Ei + (2013 + 1) E * S ?Ps; , i = l,..., 3, (5) 

where 01~ , 01~ , as are the three nonzero components of aiirm , and 

d = CQ - “2 - 201, . 

If we set E = E, + E1, where E, = E,, e is transverse and & is a small longitudinal 
component which we calculate to O(a), treating the (Y term in (5) as a perturbation, 
we find 

ii2/Q = 1 + a2 + a C Sj2ej2, 

i 
(6) 

Si’C?i - ei 1 Sj2ej2 - Si C sj3ej = 0. 
j i 

These equations are satisfied by e directions (3) only in symmetry planes containing 
z or perpendicular to z. Therefore, Eqs. (4) are physically meaningless except in 
these planes. Since L% is only a proportionality factor in the angle-dependent terms, 
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the relative anisotropy corresponding to different s directions resulting from 
existence of two solutions to Eqs. (6) is independent of the cli , and therefore of 
1 S), so long as ~2 # 0, which is true except for one triply-degenerate 1 S). A more 
detailed description of these calculations will be given in a later paper. 
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